CALCULATING THE PLANE WAKE BEHIND A BODY

L. I. Skurin UDC 533.6.011:51

The empirical theory of turbulence serves as a basis in this study of velocity, enthalpy, tur-
bulence energy, and mean-squared enthalpy (density)fluctuation profiles along the wake axis.
The problem is reduced to a system of ordinary differential equations. The asymptotic be-
havior of the solution to this system is analyzed. The results of calculations are compared
with known test data.

1. It is assumed that the velocity, the enthalpy, and the density in the far wake behind a flat body can
be determined from the system of boundary-layer equations
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All quantities here and in the subsequent analysis are dimensionless.

The balance equation pertaining to mean-square enthalpy fluctuations can be derived conventionally
[1] from the energy equation. The latter is
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where the bar above a symbol implies averaging and appears only with the second and the third moment,

The last term on the left-hand side ‘wih! has a value only near solid surfaces [2] and is, therefore,
disregarded here. The last term on the right-hand side can be rewritten as
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Since the pressure fluctuations are relatively small [1] and there is no pressure gradient within the
region studied here, this term will also be disregarded. The thirdandthe fourthterm inexpression (2) are,
according to the estimates at the end of this article, small and negligible in our case. With boundary-layer
estimates applied to Eq. (2) and assuming that
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A semiempirical closed equation of kinetic turbulence energy E per unit fluid mass can be obtained
in an analogous manner and in the small form as (4). Henceforth we will simplify the notation by writing
the equations for E and 6 as
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with
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The boundary conditions for system (1), (5) are
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2. An approximate solution to problem (1), (5), (6) is obtained by the method of integral relations.
We let
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It follows from (8) that

lp=h=1— oty + otiir?, (1)
ay=x— M (@, + 20, — 1), o,=x—1) M (a,— 1/2).

We note that representations (7)-(9) satisfy all constraints imposed on the corresponding functionsat y=0
and y — o inaccordance with (6), We will determine the unknown functions of the longitudinal coordinate A:
Vg, @4, @3, Sio when the integral relations found from the equations of motion and energy as well as from
Eq. (5) are satisfied and when the equations of motion and energy are exactly satisfied on the wake axis,

On the basis of (7)-(9) and under the assumption that p; is a function of the longitudinal coordinate
only, the integral relations will be written as
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and p(r) is given by (11).
Letting y = 0 in the equations of motion and energy, we obtain with the aid of (7)-(9), {12)-(13):
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The system of three differential equations (14), (16), (17) yields five unknown functions. The ini-
tial conditions for this system are defined by an approximation of functions vi(y), hi(y), Ski(y) given at the
first section and by relations (7)-(9).

¥ Pr = Pry = 1, then gystem (1) has the particular integral
H=¢C,-+Cu,, C,=-const, C,=const. (18)

¥ vily) and hi(y) satisfy this relation, then the latter is the solution to the problem. I is not difficult to see
that, under the given conditions, the integral method will also yield relation (18)., Indeed, if Pr = Pry =1,
then (17) becomes

da, Y udfdu,

= 0. 19
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By virtue of (18), the second of said conditions yields @¢9; = 0. The solution to the linear homogeneous
equation (19} with such an initial condition is @y =0. X becomes evident from (8), then, that (18) is satis-
fied throughout the wake region,

We will next examine the asymptotic behavior of the sought functions as uy— 0, considering for sim-
plicity that

wpy,  w/Pr L py/Pry.
Changing in (17) to the independent variable u; and using (12), we find at uy —0
1—Pr)V2
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{the symbol ~ denotes asymptotic equality). Taking this relation into account, as well as (11) and {13), we
find

a2~(

hy— 1~ (¢ — 1Yy M% (c,/c, — 1) (2 — 1) u,, (20)
The behavior of integral (15) at uy — 0 is described by the expression
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From Eq. (14), with the aid of (12), (16), and (21), we obtain the following expression for the asymptotic
value of Sy
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The asymptotic behavior of uy(x) is found from (16) with the aid of (12), The coefficient of turbulent
vigcosity will be determined from the formula

e = kogttyB. (23)

After necessary calculations, we obtain

c
~ s 24
“ l/ 8k) mIn2x 2

This formula agrees exactly with results of the asymptotic analysis made by Townsend [2] (in the Townsend
notation k = 1/Rpv2In2) for an incompressible fluid,

Relation (24) yields the value of the empirical constant k, with the aid of the test data on the uy-dis-
tribution at far distances from the body. According to {21 and [3], k = 0,065,

3. The system of equations (16), (17), (14) was integrated numerically on a digital computer by the
Runge —Kutta method. The starting values and the values at infinity were taken from the test in [4]. The
coefficient of molecular viscosity was calculated by the Sutherland formula with Pr = 0.75 and Pry = 0.7,

Distributions of the velocity defect u, (curve 1), of the enthalpy (hy — 1)/10 (curve 2), and of the wake
half~-width 6d (expressed in du s, as in [4], curve 3) are shown and compared with test data in Fig.1, Up
to the section x4y = 550 calculations did not include turbulent viscosity. The calculated values correspond-
ing to ut according to (23) are indicated by solid lines. This method of calculating the transition region
leads to a discontinuity in the total viscosity coefficient at x = x4y (which corresponds to a break in the solid
curves in Fig. 1),

In order to avoid such a discontinuity, an attempt was made to calculate the coefficient of turbulent
viscosity by the formula

Uy = ROy 4 2V1E06

(We note that, as a consequence of (22), this formula leads to the same agymptotic relation (24) for the vel-
ocity defect as formula (23).) In this case the total viscosity is not discontinuous at point x = x¢y, because
the turbulent viscosity rises (together with the turbulence energy) above zero. The corresponding calculated
values are shown in Fig. 1 by dashed lines. These lines, in a strict sense, blend smoothly with the curves
representing the laminar region, while calculations yield a rather sharp transition to the curves represent-
ing the turbulent region, Such a trend of these curves is caused by the fast initial increase in the ratio of
turbulence energy to velocity defect, as shown in Fig, 2, The value of constant c; is taken from [5], where
the autonomous profile of turbulence energy has been analyzed and where the test value 2y =~ 8,1 [2] hag
been found to correspond to ¢ = 3-2In2 ~ 4,15, With v; and ¢y known, the value of constant by is found

from formula (22) as by ~0.6.

The mean-squared enthalpy fluctuations have been calculated by Eq. (14) with k =2, The values of ¢,
and by necessary for the calculation are determined as follows. We have 2y, = 4.1, according to the tests in
[4]. An analysis of the autonomous problem analogous to the problem in [5], which concerns the profile
mean-squared enthalpy fluctuations in a wake, shows that c, = 2.1 corresponds to such a value of 2y,. Asa
consequence of (22), we have by = 1.1,

The mean-squared density fluctuations are, on the basis of the hypothesis in [1]
oo —Hih (25)
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expressed in terms of 8 as follows:
921> . —
d S . 2 1/
}\ Vo' =(x—T)MpV 20,
AL A mean-squared density fluctuation profile along the wake axis is shown
0/ KA y
¢ in Fig.3, referred to the density defect. On the same diagram we also
906 show test data. Evidently, the measured and the calculated increase of
406 density fluctuations are in satisfactory agreement,
40% We will now estimate the values of the third and the fourth term on
the right-hand side of Eq, (2). On the basis of hypothesis (25), the third
q02 term can be written as
—, 0k 20 ( du, du,, )
v,ph = — —— | Py, ——"~ - pU, .
20f 0x; h ox oy
8 _- » * The ratio of this term to the dissipative term, on the wake axis, will be
considered in conjunction with the second of the semiempirical relations
2oo 400 6008001000 x (3) and equality (16) (af pg > p):

Fig.1, Basic wake param-

eters: u, (1), (hy—1)/10 (2), !, Uf?h ?h/ax]. _ (2/hy) povodvf/dx
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Here 4PryIn2/c, is a quantity close to unity, and pyd/A < 1 (see (1)), Evidently, this ratio decreases along
the longitudinal coordinate. In the calculation described here this ratio decreases from 0.3 at the begin-
ning of the turbulent region down to 0.1. Consequently, at a high Mach number this term of the equation
may become large (only within a bounded region).

The fourth term on the right-hand side of Eq. (2) will be estimated as
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with & denoting the per unit dissipation of kinetic turbulence energy. This quantity is described by a semi-
empirical expression analogous to the second one in (3):

pe = cyu,E /82, (28)
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Fig. 2. Increase in turbulence energy.

Fig.3. Mean-squared density fluctuations: test in [4] (1),
calculation (2),
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With (27) and (28) we can write
Tijhlavi/aX.Ij
@;0h'[0x;

—~ ClprtVZ— Eo X ho—l . ug .
- Gy i i 8, fry—1

From the last expression, taking into account (20) and (22), we find that the said ratio tends toward zero
along the longitudinal coordinate. Under conditions of the problem analyzed here, this ratio does not ex-
ceed 3%.

NOTATION
X, ¥ are the longitudinal and transverse coordinates (referred to the characteristic body thickness,
d);
Vx> Vy are the components of the velocity vector, along the coordinate axes (referred to v,,);
p is the density (referred to py);
h, E‘T‘ are the enthalpy and kinetic energy of fluctuating motion, per unit fluid mass (referred to vd);
0= h'Y/2;
By Bt are the coefficient of laminar and of turbulent viscosity respectively (referred to pv,d);
Pr, Pry are the Prandtl number and Prandtl number for turbulent flow;
P is the pressure (referred to pcovfo);
£ is the per unit dissipation of kinetic turbulence energy (referred to vﬁo/ d);
) is the wake half-width (referred to d);
€y, Gy k are the empirical constants;
Yk see Eq, (22);
by are the constants in the Sy-profiles;
ai, Ty are the parameters of enthalpy profile;
gy Oy see Eq. (11);
] is the Dorodnitsyn variable;
A is the transformed wake half-width;
u is the velocity defect;
Ma is the Mach number.

Subscripts and Superscripts

denotes an unperturbed stream;

0 denotes the symmetry axis of a wake;
i denotes the first section;

tr denotes the transition point;

t denotes turbulence;

! denotes fluctuation;
- denotes an averaged quantity (omitted in symbols denoting the first moments).
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