
C A L C U L A T I N G  T H E  I ~ L A N E  W A K E  B E H I N D  A B O D Y  

L .  I .  S k u r i n  UDC 533.6.011:51 

The empir ica l  theory  of turbulence se rves  as a basis  in this study of velocity, enthalpy, t u r -  
bulence energy,  and mean-squared  enthalpy (density)fluctuation prof i les  along the wake axis. 
The problem is reduced to a sys tem of ord inary  differential  equations. The asymptot ic  be- 
havior  of the solution to this sys tem is analyzed. The resul ts  of calculations are  compared 
with known test  data. 

1. It is assumed that the velocity, the enthalpy, and the densi ty in the far  wake behind a flat body can 
be determined f rom the sys tem of boundary- layer  equations 

Opv~ Opv, 
Ox ! Og -- O, 

Ov.~ Ov:~ 0 [ Ov~ ] 

OH OH 0 {( ~ t .  ~tt I OH 
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9 =: h./h==- l/h, H ~ h  i v~/2. 

All quantities here  and in the subsequent analysis  are  dimensionless .  

The balance equation pertaining to mean-square  enthalpy fluctuations can be derived conventionally 
[1 ] f rom the energy  equation. The la t ter  is 

~ . Oh - -  os Oh' 
0 (oh '  /2 v~ Ov}h' /2 --  @h") = --  ~,vlh' Oxj Oxj Oxj - . 

(I) 

--- ~ Oh - - v j p h '  O ~  Ov~ h' v j  O ~ h , ,  % ~ - - .  (2) 
Oxj "%J Oxj Oxj % Ox~ 

where the bar above a symbol implies averaging and appears only with the second and the third moment. 

The last term on the lef~-hand side Mh T has a value only near solid surfaces [2] and is, therefore, 
disregarded here. The last term on the ri~ht-hand side can be rewritten as 

vj Op h' = v'.h ~ Op Op' h' v} Op' h'. 
i - ox - + i - - Ox; Oxj 

Since the pressure fluctuations are relatively small [1] and there is no pressure gradient within the 
region studied here, this term will also be disregarded. The third and the fourthterm in expression (2) are, 
according to the estimates at the end of this article, small and negligible in our case. With boundary-layer 
estimates applied to Eq. (2) and assuming that 
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we a r r i v e  at  the equat ion  

O0 0 0 =  0 [ ~t 
9v~ 0"~ --OV~ all 0~- ~ Pr t 
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, 0 ~ h '~ /2  ~ p h " / 2 9 ,  
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O0 
) ~ - -  c~ - -  6 2 

Oy Pr t \ OyJ  ~ Pr~ (4) 

A s e m i e m p i r i c a l  c losed  equat ion of k ine t ic  t u rbu l ence  e n e r g y  E p e r  unit  fluid m a s s  can be obtained 
in an ana logous  m a n n e r  and in the sma l l  f o r m  as  (4). Hence fo r th  we will s impl i fy  the notat ion by  wr i t ing  
the equa t ions  f o r  E and 0 as  

o& ! ,o~ o& _ o { _ ~ ,  o& ] ~,, ( o ~  i ~ . ,  s~ 
Ox Oy Oy t Pr~ -I  " @ - }  + . . . .  Pr~-1 \ Oy ] c h ~rl/:_,- . ~ , k = 1 , 2 ,  pv~ (5) 

with 

SI =- E, Wl ~-  Vx, 

The b o u n d a r y  condi t ions  fo r  s y s t e m  (1), (5) a r e  

S~-~O, w.2 ~ h. 

x = 0 ,  

Ov,~ Oh OSk 
y = 0 ,  v u . . . .  O, 

Oy Oy OV 

y =,,- oo, vx --.,- I , h-.+ h=, St~ ---* O , 

v.: = v .  (y), h = h .  (V), Sh = S~.~ (y), k = 1, 2. 
(6) 

2. An a p p r o x i m a t e  so lu t ion  to  p r o b l e m  (1), (5), 
We let  

whe re  

(6) is obtained by  the method of in tegra l  r e l a t ions .  

1 - -  v ~  _ exp  [-- (n/A)  ~ In 2] ~ r, (7) 
I -- v o 

n ~  - -  H := a ,  (1 - -  vx) -5- ae ( 1 - -  @ ,  (8) 

S,,/S,~o = r i l  -!- bk (n /A)"] ,  b,~ = c o n s t ,  k = 1, 2,  (9) 

y 6 

: I . d y ,  A : 
6' o 

(10) 

It  fol lows f r o m  (8) tha t  

1/p  [z 1 - -  aiuor q- 2 2 
= = a2u~ (11) 

a I ~ ( •  2 (a  1 + 2 a  2 -  1), ~z 2 ~ ( •  

We note tha t  r e p r e s e n t a t i o n s  (7)-(9) s a t i s f y  all  cons t r a in t s  imposed  on the  c o r r e s p o n d i n g  funct ions  at y = 0 
and y --~ ~o in a c c o r d a n c e  with (6). We will d e t e r m i n e  the unknown func t ions  of the longi tudinal  coord ina te  A- 
v0, a i ,  a2, Sk0 when the in teg ra l  r e l a t i ons  found f r o m  the equat ions  of mot ion  and e n e r g y  as  well  as  f r o m  
Eq. (5) a r e  sa t i s f i ed  and when the equat ions  of mot ion  and e n e r g y  a r e  exac t ly  sa t i s f i ed  on the wake axis .  

On the bas i s  of (7)-(9) and u n d e r  the a s s u m p t i o n  that  /~t is a funct ion of the longitudinal  coord ina te  
only,  the in tegra l  r e l a t i ons  will  be wr i t t en  as  

A: l / /  La2 c~ c.~=_4 ~ ( 1 - - v O @ ,  (12) 
4n u o ( I - u O / V  ~ ' qJ 

0 

= t" pvx a 1 -? a,_f (u o) ct/c,o c t ~ 4 (H~ - -  H) dy, (13) 

0 

878 



_ _  
b,k, 

In2 

dS~o 

d x  �84 

--  Sko 

~Zlll 0 

21/2  

d In gh gt l 
dx Fch Ag~Pr~ -~ V2- ~ 1 / 3  

31/3- + ] ' Y  [2Pr t ( •  1) N2~] k-~ Ag h 
- -  Its, ( t4)  

where  
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(15) 

and o(r) is g iven  by (11). 

Let t ing  y = 0 in the  equa t ions  of mo t ion  and ene rgy ,  we obtain  with the  aid of (7)-(9), 

duo 2 in 2 (bto -- Ft) '~176176 
dx A s (1 - -  no) 

( 1 2 ) - ( 1 3 ) :  

(16) 

d.o/d  I * ) . . . .  ul - 2a~ (1 - u0) = ,% + ~,  t p7 + (u, + 2U~o)  dx 2no - -  u~-- uJ  a~u~ duo 

1 ' ') . 

The s y s t e m  of t h r e e  d i f fe ren t i a l  equa t ions  (14), (16), (17) y ie lds  f ive unknown funct ions .  The ini-  
t im  condi t ions  f o r  this  s y s t e m  a r e  defined by  an a p p r o x i m a t i o n  of funct ions  vi(y) , hi(y) , Ski(Y) given at the 
f i r s t  s ec t ion  and by  r e l a t i o n s  (7)-(9). 

If P r  = P r  t = 1, then  s y s t e m  (1) has  the p a r t i c u l a r  in tegra l  

H = C~ -+- C2v~, C~ = const, C~ = const. (18) 

If vi(Y) and hi(Y ) s a t i s f y  th is  r e l a t ion ,  then  the l a t t e r  is the so lu t ion  to  the  p r o b l e m .  It is not diff icult  to  see  
tha t ,  u n d e r  the g iven condi t ions ,  the in teg ra l  me thod  will  a l so  yield  r e l a t i on  (18). Indeed,  ff P r  = P r  t = 1, 
then  (17) b e c o m e s  

da~ uod[/du o 
- - -  a 2 = O. (19)  
duo 2u o - -  u~ - -  u d 

By v i r tue  of (18), the second  of sa id  condi t ions  y ie lds  a2i = 0. The so lu t ion  to  the l i nea r  h o m o g e n e o u s  
equa t ion  (19) with such  an ini t ial  eondi t i6n is a 2 -- 0. It b e c o m e s  evident  f r o m  (8), then,  tha t  (18) is s a t i s -  
f i ed  t h roughou t  the  wake r eg ion .  

We will  next  examine  the a s y m p t o t i c  b e h a v i o r  of the sought  funct ions  as  u 0 --~ 0, c o n s i d e r i n g  fo r  s i m -  
p l i c i t y  tha t  

(< p~, p/Pr << pt/Pr t. 

Changing  in (17) to  the independent  v a r i a b l e  u 0 and us ing  (12), we find at u 0 --~ 0 

' ~ (I i prt) l / ~  
( 6 _ l j q l u o ,  q ~  

a~ ~, c~ , 2 V ' 2 - -  1 + Prt(1 - -  | / -2)  

(the s y m b o l  ~ deno tes  a s y m p t o t i c  equal i ty) .  Taking  th is  r e l a t i o n  into account ,  as  well as  (11) and (13), we 
find 

h ~  - -  1 ~ ( •  - -  1) ,M~ ( c , / c ~  - -  1) (2q - -  i )  u 0. (20)  

The b e h a v i o r  of in t eg ra l  (15) at  u 0 --~ 0 is d e s c r i b e d  by the e x p r e s s i o n  

I~ l/ ~ g - -  I ~ U - - 1 ) 2 F ( p U )  
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F(Prt)~--=(1--q)~:--~ - - ~ q ( 1 - - q ) - -  l ,2 -q  2. (21) 

F r o m  Eq. (14), with the aid of (12), (16), and (21), 
value of Sk0: 

we obtain the following express ion  for  the asympto t ic  

Sho 
{[(~ - -  1)M.~]k-' ~k --, 1} 2 

]/2-(In 2) 2 : [ F (Prt) -! k-I 

(21n2+bh)(cj~--2Pr~ -~ln2) I ( x - - l )  ~M~(2q-1 )  ~ j ~- 
1 (22) 

27h" 

The a sympto t i c  behav io r  of u0(x) is found f r o m  (16) with the aid of (12). 
v i s c o s i t y  will be de t e rmined  f r o m  the f o r m u l a  

Af te r  n e c e s s a r y  calculat ions,  we obtain 

The coefficient  of turbulent  

~t = kp0uo 6" (23) 

1 /  cx, (24) 
u~ ~ 8k l /  ~ ln 2 x 

This f o r m u l a  a g r e e s  exact ly  with r e s u l t s  of the a sympto t i c  ana lys i s  made by Townsend [2] (in the Townsend 
notat ion k = 1 /RT 214"~'n-2) for  an incompress ib l e  fluid. 

Relat ion (24) yields the value of the e m p i r i c a l  constant  k, with the aid of the t e s t  data  on the u0-dis-  
t r ibu t ion  at f a r  d i s tances  f r o m  the body. According to [2] and [3], k = 0.065. 

3. The s y s t e m  of equations (16), (17), (14) was in tegra ted  numer i ca l l y  on a digital  compute r  by the 
R u n g e - K u t t a  method.  The s t a r t ing  values  and the values  at infinity were  taken f r o m  the t e s t  in [4]. The 
coeff icient  of mo lecu la r  v i s cos i t y  was calcula ted by the Sutherland fo rmula  with P r  = 0.75 arid P r  t = 0.7. 

Dis t r ibut ions  of the ve loc i ty  de fec tu  0 (curve 1), of the  enthalpy (he - 1)/10 (curve 2), and of the wake 
half -width  6d (expressed  in du s, as  in [4], curve  3) a r e  shown and compared  with t es t  data  in Fig. 1. Up 
to the sec t ion  Xtr = 550 calculat ions did not include turbulent  v i scos i ty .  The calculated values c o r r e s p o n d -  
ing to ~t accord ing  to (23) a r e  indicated by solid l ines .  This method of calculat ing the t r ans i t ion  region 
leads  to a discont inui ty  in the to ta l  v i s cos i t y  coeff icient  at x = Xtr (which co r re sponds  to a b r eak  in the solid 
cu rves  in Fig.  1). 

In o rde r  to avoid such a discontinuity,  an a t tempt  was made to calculate  the coefficient of turbulent  
v i s c o s i t y  by the fo rm u l a  

~at = kPo I 27xEo 6 

(We note that,  as a consequence of (22), this  fo rmula  leads to the s a m e  asympto t ic  re la t ion  (24) for  the ve l -  
oci ty  defect  as fo rmula  (23).) In this case  the to ta l  v i scos i ty  is not discontinuous at point x = Xtr , because  
the turbulent  v i scos i ty  r i s e s  ( together  with the turbulence  energy) above zero .  The cor responding  calculated 
va lues  a r e  shown in Fig.  1 by dashed l ines .  These  l ines,  in a s t r i c t  sense ,  blend smoothly  with the curves  
r e p r e s e n t i n g  the l a m i n a r  region,  while calcula t ions  yield a r a t h e r  sha rp  t rans i t ion  to the curves  r e p r e s e n t -  
ing the turbulent  region.  Such a t rend  of these  cu rves  is caused by  the fas t  initial i nc rea se  in the ra t io  of 
turbulence  ene rgy  to ve loc i ty  defect,  as  shown in Fig. 2. The value of constant  c I is taken f r o m  [5], where 
the autonomous prof i le  of turbulence  ene rgy  has been analyzed and where  the t es t  value 27t ~ 8.1 [2] has 
been  found to co r respond  to c 1 = 3 - 2 1 n 2  ~ 4.15. With 7I and c I known, the value of constant  bl is found 
f r o m  f o r m u l a  (22) as b 1 ~0.6.  

The m e a n - s q u a r e d  enthalpy f luctuat ions have been calculated by Eq. (14) with k = 2. The values  of c 2 
and b 2 n e c e s s a r y  for  the calculat ion a r e  de te rmined  as follows. We have 272 = 4.1, according  to the t e s t s  in 
[4]. An ana lys i s  of the autonomous p r o b l e m  analogous to the p r o b l e m  in [5], which concerns  the prof i le  
m e a n - s q u a r e d  enthalpy f luctuat ions in a wake, shows that  c 2 = 2.1 co r r e sponds  to such a value of 2T2. As a 
consequence of (22), we have b2 = 1.1. 

The m e a n - s q u a r e d  densi ty  f luctuations a re ,  on the bas i s  of the hypothesis  in [1] 

p ' / p  ~--~ - -  h'/h (2S)  

880 



o, oe 
qa6 

a - - Z  

g o t  
8 

g~'O 400 600 aoo /ooo x 
Fig.  1. Basic wake pa ram-  
e te rs :  u 0 (1), (ho - 1)/10 (2), 
6d (3). 

q o e  

expressed in terms of 0 as follows: 

A mean-squared density fluctuation profile along the wake axis is shown 
in Fig. 3, referred to the density defect. On the same diagram we also 
show test data. Evidently, the measured and the calculated increase of 
density fluctuations are in satisfactory agreement. 

We will now estimate the values of the third and the fourth term on 
the right-hand side of Eq. (2). On the basis of hypothesis (25), the third 
term can be written as 

~:9~, Oh 20 ( Ov~ Ov~ 

The rat io of this t e rm to the dissipative t e rm,  on the wake axis, will be 
considered in conjunction with the second of the semiempir ica l  relat ions 
(3) and equality (16) (at Pc >>P): 

- i 
[ vjph'Oh/Oxj (2/ho) Povodvo/dx 
i ~ Oh'/OxJ" =o-- c#dPrt6~ 

4Pr,ln2 ( •  1) M~ (,oo6 !2 
- c~ v--~ \ :~ / Uo. (26) 

Here 

the longitudinal coordinate. In the calculation described here this ratio decreases from 0.3 at the begin- 
ning of the turbulent region down to 0.I. Consequently, at a high Mach number this term of the equation 
may become large (only within a bounded region). 

The fourth term on the right-hand side of Eq. (2) will be estimated as 

41Drtln2/c 2 is a quantity close to unity, and po6/A < 1 (see (1)). Evidently, this rat io decreases  along 

Ov~ ,I ~ - Ov~ Or; 
"% ~ h  = "% v.., h' + " ' 

with e denoting the per  unit dissipation of kinetic turbulence energy. 
empir ica l  express ion analogous to the second one in (3): 

(27) 

This quantity is described by a semi-  

ps=q~E/62 .  (28) 

q4 

l -  )0 

0,8 ~ a ~  

o,6 I - -  

~176 S 
2 

q 1,5 x.zo .~ 
0 

0,5 I,e ~,5 x.ld ~ 

Fig. 2 

Fig. 2. Increase in turbulence energy. 

Fig. 3 

Fig. 3. Mean-squared density fluctuations: test  in [4] (1), 
calculation (2). 
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With (27) and (28) we can write 

l xljh'cgvJOX~ t c~PrtV~" Eo ~to- l ~.~ 
o~}Oh'/Oxj c~ U2o r O--o h o -  1 

From the last expression, taking into account (20) and (22), we find that the said ratio tends toward zero 
along the longitudinal coordinate. Under conditions of the problem analyzed here,  this ratio does not ex- 
ceed 3%. 

x, y 

v x, Vy 
P 
h, E 
tO = h'2/2; 
/~, gt 
Pr ,  P r  t 
P 
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el, C2, k 

~k 
bk 
a i ,  a2 
oLi, o~ 2 

A 

U 

Ma 

NOTATION 

are the longitudinal and transverse coordinates (referred to the characteristic body thickness, 
d); 
are the components of the velocity vector, along the coordinate axes (referred to v~); 
is the density (referred to p=); 
are the enthalpy and kinetic energy of fluctuating motion, per unit fluid mass (referred to v~; 

are the coefficient of laminar and of turbulent viscosity respectively (referred to p~v~d); 
are the Prandtl number and Prandtl number for turbulent flow; 
is the pressure (referred to p=v2); 
is the per unit dissipation of kinetic turbulence energy (referred to v~/d); 
is the wake half-width (referred to d); 
are the empirical constants; 
see Eq. (22); 
are the constants in the Sk-profiles; 
are the parameters of enthalpy profile; 
see Eq. (II); 
is the Dor0dnitsyn variable; 
is the transformed wake half-width; 
is the velocity defect; 
is the Mach number. 

S u b s  

o o  

0 
i 
t r  
t 
I 

c r i p t s  a n d  S u p e r s c r i p t s  

denotes an unperturbed stream; 
denotes the symmetry  axis of a wake; 
denotes the f i rs t  section; 
denotes the transit ion point; 
denotes turbulence; 
denotes fluctuation; 
denotes an averaged quantity (omitted in symbols denoting the f i rs t  moments). 

II 

2. 

3. 
4. 
5. 
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